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ABSTRACT 

We have previously described how imaging systems and image reconstruction algorithms 
can be evaluated based on the ability of machine and human observers to perform a binary- 
discrimination task using the resulting images.le4 Machine observers used in these 
investigations have been based on approximations to the ideal observer of Bayesian 
statistical decision theory. The present work is an evaluation of tomographic images 
reconstructed from a small number of views using the Cambridge Maximum Entropy 
software, MEMSYS 3.5 We compare the performance of machine and human viewers for the 
Rayleigh resolution task. Our results indicate that for both humans and machines a broad 
latitude exists in the choice of the parameter a that determines the smoothness of the 
reconstructions. We find human efficiency relative to the best machine observer to be 
approximately constant across the range of a values studied. The close correspondence 
between human and machine performance that we have now obtained over a variety of 
tasks indicates that our evaluation of imaging systems based on machine observers has 
relevance when the images are intended for human use. 

1. INTRODUCTION 

It has long been recognized that the assessment of medical imaging systems is task 
dependent. It has also been recognized that the study of task performance may be 
expensive and time consuming because of the cost associated with having clinicians or other 
trained observers participate in the study, the need for a sufficient number of images to 
obtain statistical significance in the results, and the need for “ground truth” against which 
to judge the performance of the task. These considerations have led to the study of task 
performance by machine observers using simulated images. The most highly regarded 
machine observers are those based on the optimal observers of Bayesian statistical decision 
theory, e.g., those based on the likelihood function.6 The question of the comparative 
performance of such optimal observers--or attempts to approximate them in machine 
implementations--vis-a-vis the performance of the human observer then arises naturally. 
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The images in this particular study are obtained from reconstructions derived from 
simulations of limited-angle two-dimensional tomography. The reconstruction method used 
is based on the maximum a posteriori (MAP) method of image estimation7 where the prior 
probability distribution on the reconstructed image is the so-called entropic prior.8 The 
particular version of the reconstruction algorithm used here is from the Cambridge school 
of Gull and Skilling and is named MEMSYS 3.5 The assessment of the images proceeds 
according to the paradigm presented by Hanson:’ A large number of images are generated 
according to a Monte Carlo technique; a binary task is specified and performed by either a 
machine or a human observer; and the performance is scored according to either the method 
of the receiver operating characteristic (ROC) curveg*1o or the method of the two-alternative 
forced-choice (2AFC>? 

Last year we reported on the evaluation of MEMSYS 3 reconstructions through the 
comparison of humans and machines for the task of disk detection. We showed that the 
human and the various machine observers were all sensitive to the reconstruction 
parameter a, which controls the stopping rule for the algorithm and effectively determines 
the smoothness of the reconstruction. For both machine and human observers, we found 
disk detection performance to be maximum at the lowest ‘values of a studied, so that the 
reconstruction approached the maximum-likelihood solution with a positivity constraint. 

In varying the parameter a, the spatial frequency content in the MEMSYS 3 
reconstructions is varied. Therefore, a task with different spatial frequency requirements 
might yield different human and/or machine performance functions with a. To investigate 
this possibility, the current work extends our investigations of MEMSYS 3 reconstructions 
to the comparison of human and machine observer performance for the Rayleigh 
discrimination task. 

2. THE SCENE AND THE DATA 

The object class consists of a set of 10 scenes. Each scene contains 8 Gaussian doublets 
and 8 Gaussian bars, each randomly placed and randomly oriented in a circle of 
reconstruction inscribed in a 128x128 pixel array. The binary objects are pairs of points 
separated by 6 pixels and convolved with a 2D symmetric Gaussian function with a FWHM 
of 4 pixels. The bars are line segments 10.4 pixels long convolved with the same Gaussian 
used to create the binaries. The bar length and object amplitude were chosen to minimize 
the mean-square difference between the objects. An example scene taken from the ensemble 
is shown in Figure 1. 

The data set consists of just 8 views, equally spaced over 180”, and parallel 
projections each containing 128 samples that include additive, zero-mean Gaussian noise 
with a standard deviation equal to one. The noise in the data is pre-smoothed prior to 
reconstruction by a triangular window with a FWHM of 3 pixels, reducing the rms noise 
level by a factor of 0.484. The object characteristics and noise variance were chosen to give 
signal-to-noise ratios that render the task neither too trivial nor too difficult, so that human 
and machine performance can be measured with a good degree of reliability. 
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Figure 1. Sample scene containing 8 bar and 8 
binary objects on a zero background. The circle of 
reconstruction is inscribed in a 128x128 pixel 
array. 

3. THE RECONSTRUCTION ALGORITHM 

In previous proceedings we have described the reconstruction algorithm in detail.3?4 
Briefly, the maximum-entropy algorithm investigated here is a member of a family of MAP 
techniques for image estimation or reconstruction.’ The particular version of the 
reconstruction algorithm used here was developed by Gull and Skilling and is named 
MEMSYS 3.5 In effect the algorithm minimizes the expression 

x2/2 - as 

where x2 is chi-squared, the exponent in the likelihood function that expresses the 
probability of the data given the object under the assumption of Gaussian additive noise? 
The term -aS derives from the exponent of the entropic prior probability distribution on the 
rec0nstructi0n.8 The parameter a selects one possible member of an infinite family of 
entropic priors; the smaller its value, the less one enforces the prior distribution, and the 
closer one approaches the minimum&i-squared (or maximum likelihood) solution, while 
still retaining a positivity constraint through the entropy term. As a increases, the image 
becomes increasingly smooth, approaching the default of a uniform grey picture with mean 
level determined by the average intensity in the data set. 

Reconstructions of the scene in Figure 1 are presented in Figure 2 for several values 
of a, including two values given the special labels “historic” and “classic.” The historic 
solution is determined by setting a such that the value of chi-squared for the reconstruction 
is equal to N, the number of independent measurements in the data set. The classic 
algorithm determines a, and thereby the final value of X2, from the data itself. A further 
discussion of these particular choices for a is given in Wagner et a1.4 The MEMSYS 3 
software also allows the user to specify an arbitrary (“ad hoc”) value of the final or aimed- 
for value of &i-squared. In all cases, a is initialized at a very large value and gradually 
reduced until the desired value of &i-squared is reached. In effect, the algorithm is 
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(a) a = .05, rms residual = .22 (b) a=.6 (classic), rms residual = .26 

(c) a=4.03 (historic), rms residual = .5 (d) a=19.51, rms residual = 101 . 

Figure 2. Sample reconstructions of the scene in Figure 1 showing increased image 
smoothness as a increases. The historic run results in a final x2=1024, the number of 
measurements. The classic algorithm attempts to find an optimal value for x2 that depends 
on the quality of the data. 
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terminated by a “stopping rule,” which renders the image smoother than that offered by the 
ML solution where the algorithm runs to “completion” (~0). It can be seen from the figure 
that the value of a dramatically affects the subjective appearance of the reconstruction, and 
only an objective evaluation of the ability of an observer to discriminate between the bars 
and binaries will reveal whether a particular choice for a is preferred. 

4. MACHINE OBSERVERS 

The machine decision functions are various approximations to decision functions that 
arise naturally in the study of Bayesian statistical decision theory. A list follows: 

(a) The exact expression for the log of the posterior probability of each hypothesis 
given the data, p(flg>.3*4 This function--consisting of the product of the likelihood p(gtf) and 
the exact expression for the entropy prior p(f)--is evaluated under the two hypotheses 
(binary present and bar present). The difference between the two evaluations at each 
location is the decision variable for that test region. 

(b) The log of the posterior probability function, as in (a), but using a quadratic 
approximation obtained by expanding the expression for the log posterior probability in a 
Taylor series about the maximum (the reconstruction).3j5 (Recall that quadratic in the log 
probability density is equivalent to Gaussian in the probability density.) Again, this 
calculation is done under two hypotheses (bar present and binary present) and the 
difference forms the test statistic. 

(c) The mean-square difference between the reconstruction and the expected object. 
This difference is calculated for each of the expected objects (bar and binary) and the 
difference between the two calculations forms the test statistic. This decision strategy is 
approximately equivalent to the non-prewhitening matched filter. 

Although the objects were randomly oriented in the original scene, the machine 
reader was given the orientation of each object under test. For each of the decision 
functions listed above, the following describes the decision-making procedure for the 
algorithmic observer. The decision function is applied to 80 subregions in the 
reconstructions that contain bar objects (known and extracted by the investigator to form 
the H, test images) and the decision-function output is recorded. The decision function is 
also applied to 80 regions in the reconstructions that contain binaries (known and extracted 
by the investigator to form the H, test images) and the decision-function output is recorded. 
The decision-function outputs are histogrammed separately for the known bar and binary 
locations. Then, by the well-known technique of varying the decision-function threshold, the 
receiver operating characteristic (ROC) curve is generated.’ The area under the ROC curve 
is measured and the summary measure d, is derived from an inverse error function.” This 
measure is the figure of merit used for evaluating the machine observers. 
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5. HUMAN OBSERVERS 

Human observer performance was measured using approximately the same sub-regions 
from the reconstructions containing binary and bar objects as were available to the machine 
observer. (The machine used a slightly smaller region for the binary objects than the bar 
objects, but to eliminate this possible cue for the humans, the same region size was 
displayed for both objects during the human studies.) Each binary and bar object was 
extracted and centered in a square 35 pixels on a side. These sub-regions were then 
bilinearly interpolated twice to form images that were 140 pixels on a side. Because the 
machine reader had prior knowledge of the object orientation, the objects were rotated prior 
to display for the human observers such that each object was displayed with its major axis 
horizontal. These images were presented to the observer in pairs: one member of the pair 
from the bar class, and one member from the binary class. The side (left/right) containing 
the binary image was selected randomly. Also displayed were samples of a bar and binary 
object from the original scene, so that the observer had full knowledge of each object’s size, 
shape, etc. This is the usual two-alternative forced-choice (2AFC) parad&ng Feedback on 
the correctness of individual choices was given to the observer after each decision. The 
choices of the observer were recorded, and his or her percentage correct score was 
calculated. This percentage correct corresponds to the area under the curve in the ROC 
paradigm;g the summary measure used in this case is also derived from an inverse error 
function and is often referred to as d’, although it is also not uncommon to refer to it as d,. 
This will be the figure of merit for evaluating the human observers. 

6. RESULTS 

We shall present our results as a function of the parameter a. This parameter was 
allowed to range from a low value of 0.05 to a high value of 20. In Figure 3, the figure of 
merit d, is plotted for each of the machine observers described in Section 4. Arrows indicate 
the values of alpha corresponding to the so-called historic and classic solutions. As can be 
seen from the figure, the classic reconstructions have a smaller value of a (and hence a 
smaller x2> than the historic ones. For the historic run, x2=1024; the classic run gave 
x2=281. It can be seen from the figure that the decision variable based on the quadratic 
approximation to the log posterior probability fails catastrophically for small values of a. 
The same breakdown was observed in the detection task explored last year. The error bars, 
calculated based on the number of images studied and the resulting d’, indicate that there 
is no significant difference in performance for decision variables based on the exact posterior 
probability and mean-squared difference over the range of a studied. While there are hints 
of diminished performance at the extremes, further study is required to determine whether 
any particular value of a is optimal for these observers. (The results are more significant 
than the error bars indicate, however, because the error bars were calculated based on 
uncorrelated data, when in reality the same data were used to form the reconstructions for 
each value of a, and both the machines and the humans viewed the same images.) 

The results for two human observers are presented in Figure 4 with the performance 
curves for the two best machine observers from Figure 3. (Error bars would be similar to 
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those shown in Figure 3.) The human performance curves show trends similar to those seen 
for the machine observers. However, the humans suffer a constant performance penalty of 
approximately 30% relative to the machine observers. This constant performance lag is 
similar to that found in other psychophysical studies comparing machine and human 
observer performance for simple discrimination tasks. 12p13 
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Figure 3. Rayleigh discrimination performance for the machine observers in Section 4 as 
a function of the parameter a that controls the degree of smoothness in the reconstructions. 

Figure 4 also contains a plot of the mean-squared error (MSE) between the 
reconstruction and the original scene. Mean-squared error is used by many researchers in 
the field of image processing as a metric for image quality. In our previous investigation 
of disk detection, we found MSE to be a very poor predictor of human and machine 
performance. We have seen other instances where MSE can decrease greatly when a non- 
negativity constraint is invoked, compared to reconstructions where the constraint is not 
invoked, although observer performance may change very little. We see from Figure 4 that 
MSE shows a broad concave shape as a function of a for this task. For the set of 
reconstructions considered here, MSE changes little because we are considering a limited 
part of the reconstruction space -- the same algorithm is employed, with only the single 
parameter a being varied. Because it makes no reference to the task that the images are 
intended for, and for a host of other reasons,14 MSE cannot generally be recommended as 
a measure of image quality. 
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Figure 4. Performance of two human observers and the two best machine observers from 
the previous figure. Also shown is the mean-squared error (MSE) between the 
reconstructions and the original scenes. 

7. SUMMARY 

This study was undertaken to determine whether machine and human discrimination 
performance on the Rayleigh task would behave differently as a varies compared to the 
performance with a we found for the task of disk detection. In our earlier investigations 
of the detection problem, we found that the performance of both human and machine 
readers was poorest at the largest values of a studied, with detectability increasing steadily 
as a decreased until a performance plateau was reached near the classic solution. We have 
found that the Rayleigh task gives generally quite different performance curves as a 
function of a than those found for the detection task. For the Rayleigh task there appears 
to be much broader latitude in the choice of a. While there are hints of performance 
degradation for the humans and machines at the highest and lowest values of a studied, 
further investigation is needed with larger numbers of images and a greater range of a 
values. It is certain that observer performance must drop when a is infinite, because in 
that limit the reconstruction is a uniform grey, and no discrimination between the bar and 
binary objects is possible. However, we do not know how or where a performance decline 
will occur as a approaches that limit. We also do not yet know how closely the maximum 
likelihood limit may be approached (while maintaining the positivity constraint inherent to 
the entropy prior) before numerical difficulties will be encountered during the reconstruction 
process or observer performance declines. 
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For both a detection and a discrimination task, we have found close correspondence 
between the performance of human and certain machine observers as the character of the 
reconstructions is varied through the adjustment of the parameter a. The close 
correspondence between the robust machine observers and the human observer performance 
indicates that the machine observers that we have been using in this and previous work are 
indeed relevant when the images are intended for human use. 
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